Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 107-113, 2024.
Article in Chinese | WPRIM | ID: wpr-1005259

ABSTRACT

ObjectiveTo investigate the mechanism of Biejiajian Wan in the intervention of primary liver cancer based on long non-coding RNA SNHG5 (lncRNA SNHG5)/micro RNA-26a-5p (miRNA-26a-5p)/glycogen synthase kinase-3β (GSK-3β) signal axis. MethodDouble luciferase reporting assay was used to verify the targeted interaction between lncRNA SNHG5 and miRNA-26a-5p, miRNA-26a-5p, and GSK-3β in HepG2 cells. Nude-mouse transplanted tumor model of human HepG2 were established and randomly divided into model group, Biejiajian Wan low-dose group (0.5 g·kg-1), medium-dose group (1.0 g·kg-1), and high-dose group (2.0 g·kg-1), and sorafenib group (100 mg·kg-1), with 10 mice in each group. The mice were given intragastric administration of normal saline or drug for 28 days, and the tumor volume was measured at different time. Hematoxylin-eosin (HE) staining was used to observe the histological changes of tumors. The nucleic acid levels of lncRNA SNHG5, miRNA-26a-5p, GSK-3β, and β-catenin mPNA in tumor tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). The protein expression levels of GSK-3β and β-catenin in tumor tissue were detected by western blot. ResultCompared with the SNHG5-WT (wild type) + miRNA NC (negative control) group, the relative luciferase activities of the SNHG5-WT + miRNA-26a-5p mimic group were decreased (P<0.05). Compared with the GSK-3β-WT + miRNA NC group, the relative luciferase activity of the GSK-3β-WT + miRNA-26a-5p mimic group was decreased (P<0.05). Compared with the model group, the tumor volume of Biejiajian Wan low-dose, medium-dose, and high-dose groups was significantly decreased (P<0.05, P<0.01). Compared with the model group, the cells in the tumor tissue of nude mice in each dose group of Biejiajian Wan were sparsely arranged with necrocytosis, which showed concentration-dependent changes. Compared with the model group, the expression levels of lncRNA SNHG5, GSK-3β, and β-catenin were decreased (P<0.05, P<0.01), while the expression of miRNA-26a-5p was increased in each dose group of Biejiajian Wan (P<0.05, P<0.01). Compared with the model group, the protein expression levels of GSK-3β and β-catenin were decreased in each dose group of Biejiajian Wan (P<0.05, P<0.01). ConclusionBiejiajian Wan may affect the necrosis of liver cancer cells through lncRNA SNHG5/miRNA-26a-5p/GSK-3β signal axis and thus play an anti-tumor role. This research will provide more theoretical basis for the clinical application of Biejiajian Wan.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 10-17, 2024.
Article in Chinese | WPRIM | ID: wpr-1003761

ABSTRACT

ObjectiveTo observe the therapeutic effect of Qiwei Baizhusan(QWBZS) on diabetic encephalopathy(DE) rat model, and to explore the possible mechanism of QWBZS in the treatment of DE based on phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK-3β) signaling pathway. MethodForty-eight SPF male Wistar rats were randomly divided into blank group(8 rats) and high-fat diet group(40 rats). After 12 weeks of feeding, rats in the high-fat diet group were intraperitoneally injected with 35 mg·kg-1 of 1% streptozotocin(STZ) for 2 consecutive days to construct a DE model, and rats in the blank group were injected with the same amount of sodium citrate buffer. After successful modeling, according to blood glucose and body weight, model rats were randomly divided into model group, low, medium and high dose groups of QWBZS(3.15, 6.3, 12.6 g·kg-1), combined western medicine group(metformin+rosiglitazone, 0.21 g·kg-1), with 6 rats in each group. The administration group was given the corresponding dose of drug by gavage, and the blank group and the model group were given an equal volume of 0.9% sodium chloride solution by gavage, 1 time/day for 6 weeks. Morris water maze was used to detect the spatial memory ability of DE rats. Fasting insulin (FINS) level was detected by enzyme-linked immunosorbent assay(ELISA) and insulin resistance index(HOMA-IR) was calculated. Hematoxylin-eosin(HE) staining was used to observe the morphological changes of hippocampus in rats, ELISA was used to detect the indexes of oxidative stress in hippocampal tissues, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was used to detect mRNA expression levels of PI3K, Akt, nuclear transcription factor-κB(NF-κB), tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in hippocampus, and Western blot was used to detect the protein expression of PI3K, Akt, phosphorylated(p)-Akt, GSK-3β and p-GSK-3β in hippocampus of rats. ResultCompared with the blank group, FINS and HOMA-IR values of the model group were significantly increased(P<0.01), the path of finding the original position of the platform was significantly increased, and the escape latency was significantly prolonged(P<0.01), the morphology of neuronal cells in hippocampal tissues was disrupted, the levels of reactive oxygen species(ROS) and malondialdehyde(MDA) in hippocampus of rats were increased, and the activity of superoxide dismutase(SOD) was decreased(P<0.05, P<0.01), mRNA expression levels of PI3K and Akt were decreased(P<0.01), mRNA expression levels of NF-κB, TNF-α and IL-1β were increased(P<0.05, P<0.01), the protein expression levels of PI3K, p-Akt and p-GSK-3β were significantly decreased, and the protein expression of GSK-3β was significantly increased(P<0.01). Compared with the model group, the FINS and HOMA-IR values of the medium dose group of QWBZS and the combined western medicine group were significantly decreased(P<0.01), the path of finding the original position of the platform and the escape latency were significantly shortened(P<0.01), the hippocampal tissue structure of rats was gradually recovered, and the morphological damage of nerve cells was significantly improved, the contents of ROS and MDA in hippocampus of rats decreased and the level of SOD increased(P<0.01), the mRNA expression levels of PI3K and Akt were increased(P<0.01), and the mRNA expression levels of NF-κB, TNF-α and IL-1β were decreased (P<0.05, P<0.01), the protein expression levels of PI3K, p-Akt and p-GSK-3β were significantly increased(P<0.01), and the expression of GSK-3β was significantly decreased(P<0.01). ConclusionQWBZS can alleviate insulin resistance in DE rats, it may repair hippocampal neuronal damage and improve learning and cognitive ability of DE rats by activating PI3K/Akt/GSK-3β signaling pathway.

3.
Braz. j. biol ; 83: e250179, 2023. graf
Article in English | LILACS, VETINDEX | ID: biblio-1339372

ABSTRACT

Abstract Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimer's disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.


Resumo O diabetes mellitus (DM) é uma doença não transmissível em todo o mundo, na qual existe nível glicêmico persistentemente alto em relação à normalidade. O diabetes e a resistência à insulina são os principais responsáveis ​​pelas morbidades e mortalidades de humanos no mundo. Essa doença é regulada principalmente por várias enzimas e hormônios, entre os quais a glicogênio sintase quinase-3 (GSK-3) é uma enzima principal e a insulina é o principal hormônio que a regula. A GSK-3, que é a enzima-chave, normalmente mostra suas ações por vários mecanismos que incluem sua fosforilação, formação de complexos de proteínas e outras distribuições celulares e, portanto, controla e afeta diretamente a morfologia celular, seu crescimento, mobilidade e apoptose do célula. Perturbações na ação da enzima GSK-3 podem levar a várias condições de doença que incluem resistência à insulina que leva ao diabetes, doenças neurológicas como a doença de Alzheimer e câncer. As fluoroquinolonas são a classe mais comum de drogas que apresentam efeitos disglicêmicos por meio da interação com a enzima GSK-3. Portanto, é necessário hoje em dia compreender adequadamente as funções e mecanismos da GSK-3, principalmente seu papel na homeostase da glicose via efeitos na glicogênio sintase.


Subject(s)
Humans , Insulin Resistance , Diabetes Mellitus , Glycogen Synthase Kinase 3 , Glucose , Homeostasis
4.
Journal of Preventive Medicine ; (12): 271-274, 2023.
Article in Chinese | WPRIM | ID: wpr-965497

ABSTRACT

Objective @#To investigate the effect of aluminum exposure on expression of miR-497-5p, wingless murine breast cancer virus integration site family member 3a (Wnt3a), β-catenin protein, glycogen synthase kinase-3β (GSK-3β) protein and tau protein in rat adrenal pheochromocytoma PC12 cells, so as to provide insight into unraveling the mechanisms underlying aluminum exposure-induced abnormal phosphorylation of tau protein.@* Methods@# PC12 cells were exposed to Al(mal)3 at concentrations of 0, 100, 200, 400 μmol/L for 24 h. The viability of PC12 cells was measured using cell counting kit-8 (CCK-8) assay. The relative expression of miR-497-5p and Wnt3a was detected using a real-time fluorescent quantitative PCR (RT-qPCR) assay, and the expression of Wnt3a, β-catenin, GSK-3β, P-GSK-3β (Ser9), tau and p-tau (Ser396) proteins were determined using Western blotting. @*Results @#The viability of PC12 cells appeared a tendency towards a decline with the increase of aluminum dose (Ftrend=323.473, P=0.001). RT-qPCR assay detected that the relative miR-497-5p expression appeared a tendency towards a rise with the increase of aluminum dose (Ftrend=14.888, P=0.031), and the relative Wnt3a expression appeared a tendency towards a decline with the increase of aluminum dose (Ftrend=165.934, P<0.001). The miR-497-5p expression negatively correlated with the relative Wnt3a expression (r=-0.693, P=0.012). The expression of Wnt3a (Ftrend=357.656, P=0.001), β-catenin (Ftrend=208.750, P=0.001) and p-GSK-3β (Ser9) proteins (Ftrend=512.583, P<0.001) appeared a tendency towards a decline with the increase of aluminum dose, and the expression of GSK-3β (Ftrend=39.965, P<0.001), tau (Ftrend=277.929, P=0.006) and p-tau (Ser396) proteins (Ftrend=96.247, P=0.002) appeared a tendency towards a rise with the increase of aluminum dose. @*Conclusion@# Up-regulation of miR-497-5p and GSK-3β expression and down-regulation of Wnt3a and β-catenin expression may be a mechanism underlying aluminum exposure-induced abnormal phosphorylation of tau protein.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 63-70, 2023.
Article in Chinese | WPRIM | ID: wpr-961684

ABSTRACT

ObjectiveTo investigate the effect of Danzhi Xiaoyaosan on the phosphorylation of tau protein and different sites of glycogen synthase kinase-3β (GSK-3β) and phosphoseryl/suanyl phosphate protein phosphatase 2A (PP2A) in the hippocampus of rats with Alzheimer's disease (AD) and its mechanism. MethodThe rat model of AD was established by injecting okadaic acid into the bilateral hippocampus of 90 male Wistar rats in SPF grades. The rats with successful modeling were selected and randomly divided into model group, aricept group (0.5 mg·kg-1), and Danzhi Xiaoyaosan high, medium, and low groups (17.55, 8.77, and 4.38 g·kg-1), and then gavaged for 42 d, once a day. Morris water maze was used to detect the learning and memory ability of rats, Nissl's staining was used to observe the morphological structure of neurons in the hippocampus, and Real-time polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression levels of tau protein, GSK-3β, and PP2A. Western blot was used to determine the protein expression levels of tau protein, GSK-3β, and PP2A. ResultAs compared with the control group, the learning and memory abilities of the rats in the model group were significantly decreased (P<0.01), and the hippocampal CA3 region cells had abnormal structure, disorderly arrangement, and decreased number. The expression levels of GSK-3β mRNA, GSK-3β, p-GSK-3β-Tyr216, p-PP2A, and p-tau were increased in the model group as compared with the control group (P<0.01), and those of p-GSK-3β-Ser9 and PP2A decreased significantly (P<0.01). As compared with the model group, the learning and memory ability of the Aricept group and the Danzhi Xiaoyaosan groups were improved (P<0.05, P<0.01), and the cell morphology and the number of hippocampal CA3 regions were better. The mRNA expression levels of PP2A and tau in the Aricept group were significantly up-regulated (P<0.05), the mRNA expression level of GSK-3β was significantly down-regulated (P<0.01), and the protein expression levels of GSK-3β, p-GSK-3β-Tyr216, and p-PP2A were down-regulated (P<0.05, P<0.01), and the protein expression level of PP2A was significantly up-regulated (P<0.01). As compared with the model group, the mRNA expression level of PP2A in the high-dose Danzhi Xiaoyaosan group was significantly up-regulated (P<0.01), and that of GSK-3β was significantly down-regulated (P<0.01), whereas the protein expression levels of p-PP2A, p-GSK-3β-Tyr216, and p-tau were down-regulated (P<0.05, P<0.01), and the protein expression level of PP2A was significantly up-regulated (P<0.01). As compared with the model group, the mRNA expression level of GSK-3β was significantly down-regulated in the medium-dose Danzhi Xiaoyaosan group (P<0.01), the protein expression levels of GSK-3β, p-GSK-3β-Tyr216, and p-tau were down-regulated (P<0.05, P<0.01), and the protein expression level of PP2A was significantly up-regulated (P<0.01). As compared with the model group, the mRNA expression level of PP2A was significantly up-regulated in the low-dose Danzhi Xiaoyaosan group (P<0.01), and that of GSK-3β was significantly down-regulated (P<0.01), whereas the protein expression levels of GSK-3β and p-GSK-3β-Tyr216 were down-regulated (P<0.05, P<0.01), and those of p-GSK-3β-Ser9 and PP2A were significantly up-regulated (P<0.01). ConclusionDanzhi Xiaoyaosan can improve the learning and memory ability of rats with AD, and its mechanism may be related to the regulation of the activities of GSK-3β and PP2A protein-related sites and the phosphorylation of tau protein.

6.
Chinese journal of integrative medicine ; (12): 405-412, 2023.
Article in English | WPRIM | ID: wpr-982291

ABSTRACT

OBJECTIVE@#To investigate the role of hippocampal neurodevelopment in the antidepressant effect of baicalin.@*METHODS@#Forty male Institute of Cancer Research mice were divided into control, corticosterone (CORT, 40 mg/kg), CORT+baicalin-L (25 mg/kg), CORT+baicalin-H (50 mg/kg), and CORT+fluoxetine (10 mg/kg) groups according to a random number table. An animal model of depression was established by chronic CORT exposure. Behavioral tests were used to assess the reliability of depression model and the antidepressant effect of baicalin. In addition, Nissl staining and immunofluorescence were used to evaluate the effect of baicalin on hippocampal neurodevelopment in mice. The protein and mRNA expression levels of neurodevelopment-related factors were detected by Western blot analysis and real-time polymerase chain reaction, respectively.@*RESULTS@#Baicalin significantly ameliorated the depressive-like behavior of mice resulting from CORT exposure and promoted the development of dentate gyrus in hippocampus, thereby reversing the depressive-like pathological changes in hippocampal neurons caused by CORT neurotoxicity. Moreover, baicalin significantly decreased the protein and mRNA expression levels of glycogen synthase kinase 3β (GSK3β), and upregulated the expression levels of cell cycle protein D1, p-mammalian target of rapamycin (mTOR), doublecortin, and brain-derived neurotrophic factor (all P<0.01). There were no significant differences between baicalin and fluoxetine groups (P>0.05).@*CONCLUSION@#Baicalin can promote the development of hippocampal neurons via mTOR/GSK3β signaling pathway, thus protect mice against CORT-induced neurotoxicity and play an antidepressant role.


Subject(s)
Male , Animals , Mice , Corticosterone , Fluoxetine/metabolism , Depression/chemically induced , Glycogen Synthase Kinase 3 beta/metabolism , Reproducibility of Results , Antidepressive Agents/pharmacology , Hippocampus , TOR Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , Behavior, Animal , Disease Models, Animal , Mammals/metabolism
7.
Braz. oral res. (Online) ; 37: e112, 2023. graf
Article in English | LILACS-Express | LILACS, BBO | ID: biblio-1520511

ABSTRACT

Abstract This study aimed to investigate whether GSK-3 inhibition (CHIR99021) effectively promoted mineralization by cementoblasts (OCCM-30). OCCM-30 cells were used and treated with different concentrations of CHIR99021 (2.5, 5, and 10 mM). Experiments included proliferation and viability, cellular metabolic activity, gene expression, and mineral nodule formation by Xylene Orange at the experimental time points. In general, CHIR99021 did not significantly affect OCCM-30 viability and cell metabolism (MTT assay) (p > 0.05), but increased OCCM-30 proliferation at 2.5 mM on days 2 and 4 (p < 0.05). Data analysis further showed that inhibition of GSK-3 resulted in increased transcript levels of Axin2 in OCCM-30 cells starting as early as 4 h, and regulated the expression of key bone markers including alkaline phosphatase (Alp), runt-related transcription factor 2 (Runx-2), osteocalcin (Ocn), and osterix (Osx). In addition, CHIR99021 led to an enhanced mineral nodule formation in vitro under both osteogenic and non-osteogenic conditions as early as 5 days after treatment. Altogether, the results of the current study suggest that inhibition of GSK-3 has the potential to promote cementoblast differentiation leading to increased mineral deposition in vitro.

8.
Braz. j. biol ; 83: 1-5, 2023. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1468930

ABSTRACT

Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimer’s disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.


O diabetes mellitus (DM) é uma doença não transmissível em todo o mundo, na qual existe nível glicêmico persistentemente alto em relação à normalidade. O diabetes e a resistência à insulina são os principais responsáveis pelas morbidades e mortalidades de humanos no mundo. Essa doença é regulada principalmente por várias enzimas e hormônios, entre os quais a glicogênio sintase quinase-3 (GSK-3) é uma enzima principal e a insulina é o principal hormônio que a regula. A GSK-3, que é a enzima-chave, normalmente mostra suas ações por vários mecanismos que incluem sua fosforilação, formação de complexos de proteínas e outras distribuições celulares e, portanto, controla e afeta diretamente a morfologia celular, seu crescimento, mobilidade e apoptose do célula. Perturbações na ação da enzima GSK-3 podem levar a várias condições de doença que incluem resistência à insulina que leva ao diabetes, doenças neurológicas como a doença de Alzheimer e câncer. As fluoroquinolonas são a classe mais comum de drogas que apresentam efeitos disglicêmicos por meio da interação com a enzima GSK-3. Portanto, é necessário hoje em dia compreender adequadamente as funções e mecanismos da GSK-3, principalmente seu papel na homeostase da glicose via efeitos na glicogênio sintase.


Subject(s)
Humans , Diabetes Mellitus/enzymology , Fluoroquinolones/analysis , /analysis
9.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469146

ABSTRACT

Abstract Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimers disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.


Resumo O diabetes mellitus (DM) é uma doença não transmissível em todo o mundo, na qual existe nível glicêmico persistentemente alto em relação à normalidade. O diabetes e a resistência à insulina são os principais responsáveis pelas morbidades e mortalidades de humanos no mundo. Essa doença é regulada principalmente por várias enzimas e hormônios, entre os quais a glicogênio sintase quinase-3 (GSK-3) é uma enzima principal e a insulina é o principal hormônio que a regula. A GSK-3, que é a enzima-chave, normalmente mostra suas ações por vários mecanismos que incluem sua fosforilação, formação de complexos de proteínas e outras distribuições celulares e, portanto, controla e afeta diretamente a morfologia celular, seu crescimento, mobilidade e apoptose do célula. Perturbações na ação da enzima GSK-3 podem levar a várias condições de doença que incluem resistência à insulina que leva ao diabetes, doenças neurológicas como a doença de Alzheimer e câncer. As fluoroquinolonas são a classe mais comum de drogas que apresentam efeitos disglicêmicos por meio da interação com a enzima GSK-3. Portanto, é necessário hoje em dia compreender adequadamente as funções e mecanismos da GSK-3, principalmente seu papel na homeostase da glicose via efeitos na glicogênio sintase.

10.
Chinese Acupuncture & Moxibustion ; (12): 793-799, 2023.
Article in Chinese | WPRIM | ID: wpr-980797

ABSTRACT

OBJECTIVE@#To observe the effects of Yizhi Tiaoshen (benefiting mental health and regulating the spirit) acupuncture on learning and memory function, and the expression of phosphorylated tubulin-associated unit (tau) protein in the hippocampus of Alzheimer's disease (AD) model rats, and explore the effect mechanism of this therapy on AD.@*METHODS@#A blank group and a sham-operation group were randomly selected from 60 male SD rats, 10 rats in each one. AD models were established in the rest 40 rats by the intraperitoneal injection of D-galactose and okadaic acid in the CA1 region of the bilateral hippocampus. Thirty successfully-replicated model rats were randomly divided into a model group, a western medication group and an acupuncture group, 10 rats in each one. In the acupuncture group, acupuncture was applied to "Baihui" (GV 20), "Sishencong" (EX-HN 1), "Neiguan" (PC 6), "Shenmen" (HT 7), "Xuanzhong" (GB 39) and "Sanyinjiao" (SP 6); and the needles were retained for 10 min. Acupuncture was given once daily. One course of treatment was composed of 6 days, with the interval of 1 day; the completion of treatment included 4 courses. In the western medication group, donepezil hydrochloride solution (0.45 mg/kg) was administrated intragastrically, once daily; it took 7 days to accomplish one course of treatment and a completion of intervention was composed of 4 courses. Morris water maze (MWM) and novel object recognition test (NORT) were used to assess the learning and memory function of the rats. Using HE staining and Nissl staining, the morphological structure of the hippocampus was observed. With Western blot adopted, the protein expression of the tau, phosphorylated tau protein at Ser198 (p-tau Ser198), protein phosphatase 2A (PP2A) and glycogen synthase kinase-3β (GSK-3β) in the hippocampus was detected.@*RESULTS@#There were no statistical differences in all of the indexes between the sham-operation group and the blank group. Compared with the sham-operation group, in the model group, the MWM escape latency was prolonged (P<0.05), the crossing frequency and the quadrant stay time in original platform were shortened (P<0.05), and the NORT discrimination index (DI) was reduced (P<0.05); the hippocampal cell numbers were declined and the cells arranged irregularly, the hippocampal neuronal structure was abnormal and the numbers of Nissl bodies decreased; the protein expression of p-tau Ser198 and GSK-3βwas increased (P<0.05) and that of PP2A decreased (P<0.05). When compared with the model group, in the western medication group and the acupuncture group, the MWM escape latency was shortened (P<0.05), the crossing frequency and the quadrant stay time in original platform were increased (P<0.05), and DI got higher (P<0.05); the hippocampal cell numbers were elevated and the cells arranged regularly, the damage of hippocampal neuronal structure was attenuated and the numbers of Nissl bodies were increased; the protein expression of p-tau Ser198 and GSK-3β was reduced (P<0.05) and that of PP2A was increased (P<0.05). There were no statistically significant differences in the above indexes between the acupuncture group and the western medication group (P>0.05).@*CONCLUSION@#Acupuncture therapy of "benefiting mental health and regulating the spirit" could improve the learning and memory function and alleviate neuronal injure of AD model rats. The effect mechanism of this therapy may be related to the down-regulation of GSK-3β and the up-regulation of PP2A in the hippocampus, and then to inducing the inhibition of tau protein phosphorylation.


Subject(s)
Male , Animals , Rats , Rats, Sprague-Dawley , Glycogen Synthase Kinase 3 beta , Tubulin , Alzheimer Disease/therapy , tau Proteins/genetics , Acupuncture Therapy , Hippocampus
11.
Acta Pharmaceutica Sinica ; (12): 1383-1394, 2023.
Article in Chinese | WPRIM | ID: wpr-978679

ABSTRACT

Glycogen synthase kinase 3/SHAGGY-like kinase (GSK3) proteins play important roles in regulating plant growth, development, and stress response. In order to reveal the characteristics of GSK family members in the medicinal plant Senna tora L., in this study, we conducted the identification and expression analyses of GSKs in S. tora based on its whole genome data, combined with bioinformatics and gene expression research methods. The results showed that a total of nine S. tora GSK genes were identified, all of which contained the GSK characteristic kinase domains. All members were distributed on six chromosomes, the encoding amino acid length ranged from 465 to 943 aa, the protein molecular weight was from 33.57 to 88.83 kDa, and the average isoelectric point was 8.2. The StoSKs were divided into four evolutionary branches, and the StoSKs in the same evolutionary branch shared the same exon/intron structure and conserved motifs. The expansion of the StoSKs gene family was mainly due to segment duplication events, and there were 17, 11, 8 and 7 pairs of collinear genes with Glycine max, Medicago truncatula, Arabidopsis thaliana and Oryza sativa, respectively. The promoter regions of StoSKs mostly contained responses elements related to stress stimulation, growth and development, and hormone induction. Transcriptome data analysis showed that StoSKs were expressed in different tissues, with the highest expression level in roots. Quantitative real-time PCR (qRT-PCR) analysis indicated that StoSKs in different evolutionary branches displayed a synergistic expression pattern response to light, and most of StoSKs could rapidly respond to NaCl stress with significantly up-regulated expression. All the results provide a basis for further analysis of the biological functions of the GSKs gene family in S. tora.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 162-169, 2023.
Article in Chinese | WPRIM | ID: wpr-978462

ABSTRACT

ObjectiveTo observe the effects of modified Shenqiwan on renal function and fibrosis in diabetic nephropathy mice and explore the underlying mechanism based on the glycogen synthase kinase-3β (GSK-3β)/cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) signaling pathway. MethodFifty male db/db mice and 10 db/m mice were used in this study. The fifty db/db mice were randomly divided into model group, irbesartan group, and low-, medium-, and high-dose modified Shenqiwan groups. The 10 db/m mice were assigned to the normal group. The mice in the low-, medium-, and high-dose modified Shenqiwan groups were administered with modified Shenqiwan in the dosage form of suspension of Chinese medicinal granules by gavage, those in the irbesartan group were given irbesartan suspension by gavage, and those in the normal and model groups were given distilled water of equal volume by gavage. The intervention lasted for 12 weeks. The blood glucose levels, urine albumin-to-creatinine ratio (UACR), and the protein expression levels of GSK-3β, CREB, transforming growth factor-β1 (TGF-β1), E-cadherin, Vimentin, fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1), and Collagen type Ⅳ (Coll Ⅳ) in the mouse kidneys were recorded before and after treatment. The extent of renal pathological damage was also observed. ResultCompared with the normal group, the model group showed significant increases in blood glucose levels, UACR levels, and the protein expression levels of GSK-3β, TGF-β1, E-cadherin, Vimentin, FN, PAI-1, and Coll Ⅳ in the kidneys (P<0.05), decreased protein expression level of CREB (P<0.05), and severe renal pathological damage. Compared with the model group, the low-, medium-, and high-dose modified Shenqiwan groups and the irbesartan group showed varying degrees of decreases in blood glucose levels, UACR levels, and the protein expression levels of GSK-3β, TGF-β1, E-cadherin, Vimentin, FN, PAI-1, and Coll Ⅳ in the kidneys (P<0.05), increased expression level of CREB protein (P<0.05), and improved renal pathological damage. ConclusionModified Shenqiwan can effectively reduce blood glucose levels, improve renal function, and alleviate fibrosis, and the mechanism of action is related to the inhibition of the GSK-3β/CREB signaling pathway.

13.
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 499-505, 2022.
Article in Chinese | WPRIM | ID: wpr-956115

ABSTRACT

Objective:To investigate the effects of Danggui Shaoyao San(DSS) on cognitive function and neuronal apoptosis in vascular dementia (VD) rats.Methods:Fifty SPF grade male SD rats aged 6-7 weeks were randomly divided into sham operation group, model group, positive drug group (nimodipine group, 9.45 mg·kg -1), DSS low-dose group (1.6 g·kg -1), DSS high-dose group (6.4 g·kg -1) according to random number table, with 10 rats in each group. The VD rat model was established by permanent ligation of bilateral common carotid arteries. Seven days after modeling, the rats in different groups were administrated by gavage according to corresponding interventions, once a day, for 28 days. Morris water maze test was used to evaluate the learning and memory ability of rats.The levels of malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS) in hippocampal area of rat brain were detected by ELISA.The protein expressions of apoptosis-related proteins Bcl-2, Bax, cleaved Caspase-3 and leptin receptor/glycogen synthase kinase 3β microtubule-associated protein tau(LEP-R/GSK-3β/tau) signaling pathway were detected by Western blot. GraphPad Prism 9 software was used for statistical analysis of data, repeated measure ANOVA and one-way ANOVA were used for comparison between multiple groups, and SNK- q test was used for further pairwise comparison. Results:The results of water maze experiment showed that the time and group interaction of escape latency of the five groups were not significant ( F=1.223, P>0.05), the main effect of group and time were significant ( F=74.65, 18.32, both P<0.05). On the 5th day, the escape latency of nimodipine group, DSS low-dose group and DSS high-dose group were lower than that of model group ( q=14.425, 7.477, 21.392, all P<0.05), and that of DSS high-dose group was lower than that of nimodipine group ((15.28±2.46)s, (22.78±3.31)s, q=6.966, P<0.05). There was statistically significant difference in the number of crossing platforms of rats in 5 groups ( F=17.331, P<0.05). The numbers of platform crossing in nimodipine group and DSS high-dose group were higher than that in model group ( q=6.789, 10.635, 5.270, all P<0.05), and the number of platform crossing in DSS high-dose group was higher than that in nimodipine group ((6.84±1.63), (5.22±1.75), q=3.846, P<0.05). ELISA results showed that the levels of MDA, ROS and SOD in hippocampal tissues of rats in 5 groups were significantly different ( F=49.338, 38.518, 15.440, all P<0.05). The levels of MDA and ROS in hippocampus of DSS high-dose group were lower than those of model group ( q=16.061, 13.541, both P<0.05) and nimodipine group ( q=4.317, 5.162, both P<0.05), SOD level of DSS high-dose group was higher than those of model group ( q=8.179, P<0.05) and nimodipine group ( q=4.135, P<0.05). Western blot results showed that the levels of apoptosis-related proteins Bcl-2/Bax and Caspase-3 were significantly different in the 5 groups ( F=30.692, 43.384, both P<0.01). The level of Bcl-2/Bax in DSS high-dose group was higher than that in model group ( q=10.562, P<0.05) and nimodipine group ( q=3.820, P<0.05), the level of Caspase-3 was lower than those of model group ( q=12.139, P<0.05) and nimodipine group ( q=7.734, P<0.05). The levels of LEP-R, p-GSK-3β, p-S404 tau and p-S202 tau expression level in hippocampal tissues of the 5 group were significantly different ( F=80.927, 59.230, 159.784, 105.923, all P<0.01). The levels of LEP-R and p-GSK-3β protein in nimodpine group and DSS high-dose group were higher than those in model group ( q=16.275, 20.104, both P<0.05; q=12.942, 17.257, both P<0.05), the levels of p-S404 Tau and p-S202 Tau in the two groups were lower than those in model group ( q=19.121, 27.456, both P<0.05; q=17.559, 22.780, both P<0.05). The levels of LEP-R(0.98±0.15), (0.86±0.14)) and p-GSK-3β((0.95±0.16)s, (0.82±0.13)) in DSS high-dose group were higher than those in nimodipine group ( q=3.829, 4.314, both P<0.05), the levels of p-S404 Tau((0.41±0.03)s, (0.58±0.07)) and p-S202 Tau((0.48±0.05)s, (0.59±0.06)) in DSS high-dose group were lower than those of nimodipine group ( q=8.335, 5.220, both P<0.05). Conclusion:DSS can improve the cognitive function of VD rats, and the mechanism may be related with reducing oxidative stress level, inhibiting neuronal apoptosis, and upregulating LEP-R/GSK-3β/Tau signaling pathway.

14.
Journal of Environmental and Occupational Medicine ; (12): 1095-1101, 2022.
Article in Chinese | WPRIM | ID: wpr-960530

ABSTRACT

Background Aluminum (Al) can cause irreversible damage to neurons and synapses function, and the mechanism may be connected to mitochondrial damage caused by glycogen synthase kinase-3β (GSK-3β) regulating dynamin-related protein 1 (DRP1), resulting in inhibition of the growth of neuronal protrusions. Objective To investigate the role of GSK-3β regulating DRP1 in the inhibition of primary hippocampal neurite growth induced by Al. Methods Neurons were extracted from the hippocampus of newborn mice (≤24 h old) for primary culture. On day 6, the purity of neurons was detected by immunofluorescence. On day 10, neurons with good growth state were selected for Al exposure and GSK-3β inhibitor SB216763 (SB) intervention. The experiment design included a blank control group, a dimethyl sulfoxide (DMSO) group, an Al (20 μmol·L−1) group, a SB (1 μmol·L−1) group, and a SB (1 μmol·L−1) + Al (20 μmol·L−1) group. After primary hippocampal neurons were treated with Al or SB for 48 h, cell viability was detected by CCK-8 assay, the mitochondrial morphology of primary hippocampal neurons was observed by transmission electron microscopy, the total protrusion length of primary hippocampal neurons was scanned and analyzed by laser confocal imaging, and their complexity was analyzed by Sholl analysis. The expression levels of phospho-GSK-3β, GSK-3β, and DRP1 were detected by Western blotting. Results The immunofluorescent results showed that the purity of primary neurons was higher than 90%. After the Al exposure and the SB intervention for 48 h, compared with the blank control group, there was no obvious difference in cell viability in the DMSO group and the SB group (P>0.05), and the Al group showed reduced cell viability (P=0.006); there was no obvious difference in cell viability between the SB+Al group and the Al group (P>0.05). Compared with the blank control group, there was no obvious difference in the average total length of protrusion in the DMSO group and the SB group (P>0.05), and the Al group showed reduced average total length of neurite (P<0.001); the average total neurite length in the SB+Al group was significantly increased compared with that in the Al group (P=0.001). The results of Sholl analysis revealed that, within 130 μm from the cytosol, the number of intersections of neurons in each group increased with the increase of distance. Above 130 μm from the cytosol, the number of intersections of neurons in each group decreased gradually with increase of distance. At 130 μm and 310 μm from the cytosol, compared with the blank control group, the number of neuronal intersections in the DMSO group and the SB group had no obvious difference (P>0.05), and that in the Al group was significantly reduced (P<0.05); there was no obvious difference in the number of neuronal intersections between the SB+Al group and the Al group (P>0.05). The mitochondrial structure of the blank control group was complete and the crest was clearly visible; there was no apparent variation in the mitochondrial structure in the DMSO group and the SB group; the mitochondria in the Al group were vacuolated and the crista disappeared; the SB+Al group showed clearer crista than the Al group. The difference in GSK-3β phosphorylation level among groups was statistically significant (F=45.841, P<0.001). Compared with the blank control group, the GSK-3β phosphorylation level showed not significantly different in the DMSO group (P>0.05), increased in the SB group (P=0.022), and significantly reduced in the Al group (P<0.001); the GSK-3β phosphorylation level was significantly higher in the SB+Al group than in the Al group (P<0.001). The difference in DRP1 protein level among groups was statistically significant (F=8.389, P=0.003). Compared with the blank control group, the DRP1 protein levels in the DMSO group and the SB group were not significantly different (P>0.05), and significantly increased in the Al group (P=0.001); the DRP1 protein level in the SB+Al group was significantly lower than that in the Al group (P=0.029). Conclusion Al may increase the level of DRP1 protein by activating GSK-3β, causing mitochondrial damage and inhibiting neuronal protrusions growth.

15.
Tropical Biomedicine ; : 384-393, 2022.
Article in English | WPRIM | ID: wpr-960312

ABSTRACT

@#Many of the therapeutic effects of plant extracts and bioactive compounds appear related to their immunomodulatory effects and impact on the host immune system. The immune response is desirable to mitigate established infections and, in the case of severe malaria, is a feasible approach to dealing with the overwhelming cytokine response. Glycogen synthase kinase-3 (GSK3), a Ser/Thr kinase that is a central regulator of the cytokine response, is a promising antimalarial drug target. In this review, we discussed our ongoing research projects, which include assessing the antimalarial activities of medicinal plants and their bioactive compounds, immunomodulatory activities mediated by GSK3, and the potential inflammatory pathway involved in malarial infection.

16.
Einstein (Säo Paulo) ; 20: eRW0170, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1404659

ABSTRACT

Abstract Alzheimer's disease is a neurodegenerative condition that causes changes in memory and cognition, in addition to behavioral disorders, and most commonly affects the elderly. Several studies in the literature have presented therapeutic measures in an attempt to interfere with the pathogenic mechanisms of the disease and to mitigate its clinical manifestations. Some factors, such as excitotoxicity, cholinergic dysfunctions, oxidative stress, tau protein hyperphosphorylation, changes in amyloid-beta peptide metabolism, herpes viruses, apolipoprotein E, glycogen synthase kinase 3, insulin resistance, and the endocannabinoid system seem to be related to pathophysiology of Alzheimer's disease. Given this, a literature review was carried out to address the molecular mechanisms associated with the pathophysiological hypotheses previously mentioned, aiming to better understanding their underlying causes and contributing to possible pharmacological strategies about treatment of the disease.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 96-102, 2022.
Article in Chinese | WPRIM | ID: wpr-940697

ABSTRACT

ObjectiveTo study the effect of icariin on the proliferative capacity of hepatocellular carcinoma cell line CLC5 and the underlying mechanism. MethodThe targets of icariin were screened out by network pharmacology, and the target network and protein-protein interaction (PPI) network were constructed to predict the possible targets and pathways of icariin. CCK-8 assay was employed to explore the effects of different concentrations (0, 6.25, 12.5, 25, 50 μmol·L-1) of icariin on the viability of CLC5 cells. Further, CLC5 cells were treated with 0, 25, 50 μmol·L-1 icariin, and the effect of icariin on CLC5 cell proliferation was examined by Edu-488 assay and clone formation assay (CFA). Western blot was employed to measure the expression levels of proteins in the protein kinase B (Akt)/glycogen synthase kinase 3β (GSK3β)/cell cycle-dependent kinase (CDK) pathway in the CLC5 cells exposed to different concentrations of icariin. ResultNetwork pharmacological analysis revealed that icariin may inhibit the hepatocellular carcinoma via cell cycle arrest and inhibition of tumor cell proliferation. Compared with the blank group, icariin decreased the viability of CLC5 cells in a time- and concentration-dependent manner (P<0.01) and reduced the positive rate of Edu-488 and the colonies in CFA (P<0.05, P<0.01). Moreover, icariin down-regulated the protein levels of p-Akt, p-GSK3β, CDK4, and CyclinD1 (P<0.05, P<0.01). ConclusionIcariin may block cell cycle to suppress the proliferation of CLC5 cells via inhibiting the Akt/GSK3β/CDK pathway.

18.
Acta cir. bras ; 36(10): e361002, 2021. graf
Article in English | LILACS, VETINDEX | ID: biblio-1349867

ABSTRACT

ABSTRACT Purpose: Spontaneous intracerebral hemorrhage (ICH) is a major cause of death and disability with a huge economic burden worldwide. Cerebrolysin (CBL) has been previously used as a nootropic drug. Necroptosis is a programmed cell death mechanism that plays a vital role in neuronal cell death after ICH. However, the precise role of necroptosis in CBL neuroprotection following ICH has not been confirmed. Methods: In the present study, we aimed to investigate the neuroprotective effects and potential molecular mechanisms of CBL in ICH-induced early brain injury (EBI) by regulating neural necroptosis in the C57BL/6 mice model. Mortality, neurological score, brain water content, and neuronal death were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, Evans blue extravasation, Western blotting, and quantitative real-time polymerase chain reaction (PCR). Results: The results show that CBL treatment markedly increased the survival rate, neurological score, and neuron survival, and downregulated the protein expression of RIP1 and RIP3, which indicated that CBL-mediated inhibition of necroptosis, and ameliorated neuronal death after ICH. The neuroprotective capacity of CBL is partly dependent on the Akt/GSK3β signaling pathway. Conclusions: CBL improves neurological outcomes in mice and reduces neuronal death by protecting against neural necroptosis.


Subject(s)
Animals , Mice , Neuroprotective Agents/pharmacology , Necroptosis , Signal Transduction , Cerebral Hemorrhage/drug therapy , Apoptosis , Proto-Oncogene Proteins c-akt/metabolism , Neuroprotection , Glycogen Synthase Kinase 3 beta/pharmacology , Amino Acids , Mice, Inbred C57BL , Neurons/metabolism
19.
Journal of Environmental and Occupational Medicine ; (12): 1207-1213, 2021.
Article in Chinese | WPRIM | ID: wpr-960720

ABSTRACT

Background Aluminum can induce irreversible structural and synaptic functional damage, and the associated mechanism may be related to the neurite damage regulated by glycogen synthase kinase-3β (GSK-3β)/collapsin response mediator protein 2 (CRMP2). Objective This experiment is conducted to investigate the effect of aluminum-maltolate [Al(mal)3] on primary hippocampal neuron neurites in mice, and reveal the role of GSK-3β-CRMP2 in this process. Methods The hippocampus of newborn ICR mice (≤ 24 h old) was used for primary neuronal cultures. On the 5th day in vitro (DIV5), neuron purity detection were performed by confocal laser scanning microscopy. On DIV7, the neurons were transfected with lentiviral vector-mediated mNeonGreen. On DIV10, the neurons with mNeonGreen fluorescence in good growth state were treated with Al(mal)3. The stage I experimental groups were blank control group, maltol group, 10 µmol·L−1 Al group, 20 µmol·L−1 Al group, and 40 µmol·L−1 Al group. Then 20 µmol·L−1 Al was used to establish a model of neurite injury and for the intervention. The stage II experimental groups were blank control group, dimethyl sulfoxide (DMSO) group, Al (20 µmol·L−1) group, SB (GSK-3β inhibitor, 1 µmol·L−1), and SB (1 µmol·L−1)+Al (20 µmol·L−1) group. CCK-8 method was used to detect the viability of neurons. The primary hippocampal neurons of mice were scanned with high content analysis system at 0 h and 48 h after Al or SB treatment, and the density and length of neurites were analyzed. Western blotting was used to detect the expression and phosphorylation levels of CRMP2 and GSK-3β in primary hippocampal neurons of mice. Results The immunofluorescence results showed that the purity of primary neurons was more than 90%. Compared with the blank control group in stage I, the cell viability rates of the 10, 20, and 40 µmol·L−1 Al groups were decreased after 48h of Al(mal)3 treatment (P<0.05), while the cell viability rate of the maltol group had no significant change. There was no significant difference in cell viability rate among the DMSO group, the SB group, and the control group after 48h of SB treatment, and the viability rate of neurons in the SB+Al group was higher than that in the Al group (P<0.05) in stage II. The 48 h/0 h ratios of average number and length of neurites in the control group were 90.13%±11.70% and 113.24%±8.34%, respectively. The 48 h/0 h ratios in the Al group were 56.47%±16.36% and 62.06%±6.75%, respectively, which were lower than those in the control group (P<0.05). The 48 h/0 h ratios of average number of neurites in the SB group (99.03%±21.83%) was not significantly different from that in the control group, but the 48 h/0 h ratio of average length of neurites in the SB group (128.72%±15.39%) was higher than that in the control group (P<0.05). The 48 h/0 h ratios of average number (72.59%±10.89%) and length of neurites (93.84%±14.65%) in the SB+Al group were significantly increased compared with those in the Al group (P<0.05). Western blotting results showed that: There was no significant difference in GSK-3β protein level among all groups; compared with the control group (1.00±0.18), the protein level of p-GSK-3β in the Al group (0.45±0.05) was significantly decreased, and that in the SB group (1.32±0.23) was significantly increased; the protein level of p-GSK-3β in the SB+Al group (0.80±0.05) was significantly higher than that in the Al group (P<0.05). Compared with the control group (1.00±0.07), the CRMP2 protein level in the Al group (0.66±0.11) was significantly decreased (P<0.05), while that in the SB group (1.01±0.02) was not significantly changed. Compared with the control group (1.00±0.13), the p-CRMP2 protein level in the Al group (1.50±2.18) was significantly increased, and that in the SB group (0.62±0.09) was significantly decreased (P<0.05); the protein level of p-CRMP2 in the SB+Al group (1.28±0.24) was lower than that in the Al group (P<0.05). Conclusion Aluminum may activate GSK-3β, increase CRMP2 phosphorylation level, and damage neurite growth.

20.
Chinese Journal of Anesthesiology ; (12): 865-869, 2021.
Article in Chinese | WPRIM | ID: wpr-911294

ABSTRACT

Objective:To evaluate the relationship between phosphorylation of glycogen synthase kinase-3β (GSK-3β) and high glucose-caused abolition of cardioprotection induced by sevoflurane postconditioning.Methods:H9c2 cells were incubated in normal glucose (5.56 mmol/L) DMEM culture medium or high glucose (33 mmol/L) DMEM culture medium.The cells were divided into 8 groups ( n=24 each) using a random number table method: normal control group (group NC), normal glucose-cultured hypoxia/reoxygenation (H/R) group (group NH/R), normal glucose-cultured sevoflurane postconditioning group (group NS), normal glucose-cultured GSK-3β inhibitor SB216763 group (group NSB), high glucose-cultured group (group HC), high glucose-cultured H/R group (group HH/R), high glucose-cultured sevoflurane postconditioning group (group HS) and high glucose-cultured GSK-3β inhibitor SB216763 group (group HSB). The model of cardiomyocyte H/R was established by subjecting cardiomyocytes to 3 h of hypoxia followed by reoxygenation.Immediately after onset of reoxygenation, cardiomyocytes were exposed to 2.4% sevoflurane for 30 min in Ns and HS groups.Before the beginning of reoxygenation, GSK-3β inhibitor SB216763 was added to the culture medium with the final concentration of 10 μmol/L in NSB and HSB groups.At 3 h of reoxygenation, the apoptosis rate was determined by Anexin V-PI flow cytometry, the expression of GSK-3β and phosphorylated GSK-3β (p-GSK-3β) was detected by Western blot, superoxide dismutase (SOD) activity was measured using xanthineoxidase method, and lactic dehydrogenase (LDH) activity and malondialdehyde (MDA) content were determined by colorimetric assay. Results:Compared with group NC, apoptosis rate, LDH activity and MDA content were significantly increased, and SOD activity was decreased in group NH/R and group HC, expression of GSK-3β was up-regulated, and expression of p-GSK-3β was down-regulated in group NH/R, expression of p-GSK-3β was up-regulated in group NS, and expression of p-GSK-3β was down-regulated in group HC ( P<0.05). Compared with group NH/R, apoptosis rate, LDH activity and MDA content were significantly decreased, and SOD activity was increased in group NS and NSB groups, and expression of GSK-3β was down-regulated, and expression of p-GSK-3β was up-regulated in group NS ( P<0.05). Compared with group HC, apoptosis rate, LDH activity and MDA content were significantly increased, SOD activity was decreased, expression of GSK-3β was up-regulated, and expression of p-GSK-3β was down-regulated in group HH/R ( P<0.05). Compared with group HH/R, apoptosis rate, LDH activity and MDA content were significantly decreased, and SOD activity was increased in group HSB ( P<0.05). Conclusion:The mechanism by which high glucose abolishes cardioprotection induced by sevoflurane postconditioning is related to inhibiting phosphorylation of GSK-3β.

SELECTION OF CITATIONS
SEARCH DETAIL